perm filename DOC[EKL,SYS]1 blob
sn#818967 filedate 1986-06-10 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00006 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 Facts about reverse:
C00004 00003 A proof of Ramsey's Theorem
C00005 00004 The pigeon hole principle and proofs that permutations are a group
C00010 00005 A problem in non monotonic reasoning
C00011 00006 The quantifier `there exists exactly one'
C00012 ENDMK
C⊗;
;Facts about reverse:
;File names:
;natnum[ekl,sys] ;facts of natural numbers, involving <,',+ and *
;lispax[ekl,sys] ;axioms of LISP
;reverse[ekl,sys] ;facts about reverse
;lthrev[ekl,sys] ;facts about length and reverse
;Facts about reverse are given in the following order
; lispax
; |
; ↓
; reverse natnum
; | |
; |_________________|
; |
; ↓
; lthrev
;A proof of Ramsey's Theorem
;File names:
;natnum[ekl,sys] ;facts of natural numbers, involving <,',+ and *
;natset[ekl,sys] ;facts of set theory
;ramsey[ekl,sys] ;proof of the theorem
;File organization:
; natnum
; ↓
; natset
; ↓
; ramsey
;The pigeon hole principle and proofs that permutations are a group
;(see the paper G.Bellin and J.Ketonen, Experiments in Authomatic Theorem Proving)
;which explains the material.
;File names:
;normal[ekl,sys] ;a normalizer of (propositional) expressions
;natnum[ekl,sys] ;facts of natural numbers, involving <,',+ and *
;minus[ekl,sys] ;facts of natural numbers, involving ≤ and -
;lispax[ekl,sys] ;axioms of LISP
;set[ekl,sys] ;rudiments of set theory
;length[ekl,sys] ;length of lists
;nth[ekl,sys] ;the nth function and its relatives
;appl[ekl,sys] ;two notions of application, via lists of numbers
;sums[ekl,sys] ;finite sums and unions
;mult[ekl,sys] ***bug*** ;multiplicity and their properties
;pigeon[ekl,sys] ;the prigeon hole principle in 2nd order arithmetic
;alpig[ekl,sys] ;application of the pigeon hole to alists
;invima[ekl,sys] ;a generalization (third application)
;assoc[ekl,sys] ;permutations are a group (using alists)
;lpig[ekl,sys] ;application of the pigeon hole to lists of numbers
;permp[ekl,sys] ;permutations are a group (lists, using predicates)
;permf[ekl,sys] ;permutations are a group (lists, using functions)
;File organization:
; natnum normal lispax
; | | ↓
; |____________| allp
; ↓ ↓
; minus set
; |___________________________|
; ↓
; length
; ↓
; nth
; ↓
; appl
; _____________|______________________
; ↓ ↓ ↓ ↓
; sums assoc permp permf
; ↓
; mult
; ↓
; pigeon
; _____________
; ↓ ↓
; alpig lpig
; ↓
; invima
;A problem in non monotonic reasoning
;bird[ekl,sys] ;most birds can fly, but not all:
; ;use of the predicate `ab' (abnormal)
;The quantifier `there exists exactly one'
;unique[ekl,sys] ;∃!